
THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

Introductory classes

Summer semester 2023/2024 a.k.a. 2024L

"Mechanics of Thin-Walled Structures (MTS)"

Tutorials/exercises:

Supervisor/lectures: Prof. Adam Dacko, Ph.D., D.Sc. Katarzyna Gojny, Ph.D.

Warszawa, 20.02.2024

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

Contents:

- 1. Contact
- 2. Website of Division of Strength of Materials and Structures
- 3. Lecture topics
- 4. Literature
- 5. Important dates
- 6. Regulations:
- lecture
- laboratory
- grades
- improvement tests
- 7. Summary

Warszawa, 20.02.2024

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

1. Contact

Supervisor:

Prof. Adam Dacko, Ph.D., D.Sc.

adam.dacko@pw.edu.pl, room 34

<u>Assistant:</u> Katarzyna Gojny, Ph.D.

katarzyna.gojny@pw.edu.pl, room 37

Warszawa, 20.02.2024

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

2. Website of Division of Strength of Materials and Structures

Please write this link down:

https://www.meil.pw.edu.pl/zwmik/ZWMiK/Dla-studentow2/MTS

(or use TEAMS "pliki=files" tab)

Website mainly contains:

- updated information
- regulations
- homeworks
- lab manuals
- other

All guidelines from this presentation are on this website and on TEAMS.

Website:

https://www.meil.pw.edu.pl/zwmik/ZWMiK/Dla-studentow2/MTS

Konsultacje semestr zimowy 2023/24

Pracownicy

Dydaktyka

Dla studentów

Badania

Zakład Wytrzymałości Materiałów i Konstrukcji Wydział Mechaniczny Energetyki i Lotnictwa

Mechanics of Thin-Walled Structures

Dla studentów

Dla studentów - strona startowa

đ

A 🗮

Updated information:

NEWS on the FE software used in MTS class - computer lab:

1. Here goes the link to the current "Patran-Nastran" student version:

https://www.mscsoftware.com/student-editions

2. The above link is for number of CAE programs - for this course MSC Nastran with Patran is of interest

From the MSC web-page you can download \underline{also} the "Documentation-installation" file, as well as the "Examples_installation" file.

3. Registration at MSC site for student versions is necessary (scan/photo of Student ID card is required)

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

3. Lecture topics

- 0. Contents & requirements
- 1. Knowledge refreshment:

Stress, Strain, Moment of inertia (first, second, inclined section), Bending, Torsion

- 2. Thin-walled structures introduction
- 3. Beams (1D structures):
- bending of beams
- shear center definition
- 4. Bending of open section beams
- 5. Bending of closed section beams
- 6. Torsion of beams
- Free torsion
- Constrained torsion
- 7. Buckling

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

4. Literature

Recommended book:

1) "An Introduction to Aircraft Structural Analysis", T.H.G. Megson, Published by Elsevier Ltd., 2010

Polish books:

- 1) "Statyka i stateczność konstrukcji prętowych i cienkościennych", Zbigniew Brzoska, Państwowe Wydawnictwo Naukowe, Warszawa 1961
- **2) "Mechanika Materiałów i Konstrukcji"**, tom 1 i 2, Marek Bijak-Żochowski i inni, Oficyna Wydawnicza Politechniki Warszawskiej
- **3)** "Wytrzymałość Materiałów", Zbigniew Brzoska, Państwowe Wydawnictwo Naukowe, Warszawa 1974

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

5. Important dates

Lectures & Exercises 8:15 – 12:00 (4 h):

- 20.02 Lecture 1
- 27.02 Lecture 2
- 05.03 Exercise 1
- 12.03 Lecture 3
- 19.03 Test 1, Exercise 2
- 26.03 Lecture 4
- 02.04 DAY OFF Eastern Holidays
- 09.04 Test 2, Lab introduction (MSC Patran+Nastran)

Please don't be late! All tests will start at 8:15. Lectures will also start at 8:15.

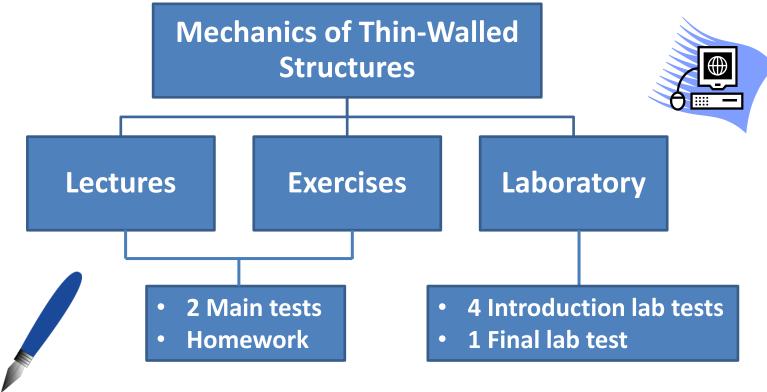
THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

5. Important dates

<u>Laboratories 8:15 – 12:00 (4 h):</u>	HHH A
16.04 Lab 1 <mark>(group 1):</mark> 8:15 – 12:00 (4 h)	Clevis
23.04 Lab 2 <mark>(group 1)</mark> : 8:15 – 12:00 (4 h)	Conical Structure
30.04 DAY OFF	
07.05 Lab 3 <mark>(group 1)</mark> : 8:15 – 12:00 (4 h)	Thin-walled beam
14.05 Lab 4 <mark>(group 1)</mark> : 8:15 – 12:00 (4 h)	Buckling & Final lab test
21.05 Lab 1 <mark>(group 2)</mark> : 8:15 – 12:00 (4 h)	Clevis
28.05 Lab 2 <mark>(group 2)</mark> : 8:15 – 12:00 (4 h)	Conical Structure
04.06 Lab 3 <mark>(group 2)</mark> : 8:15 – 12:00 (4 h)	Thin-walled beam
11.06 Lab 4 <mark>(group 2)</mark> : 8:15 – 12:00 (4 h)	Buckling & Final lab test

Please don't be late! Laboratories will start at 8:15.



THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

6. Regulations

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING Division of Strength of Structures and Materials

6. Regulations

The "Mechanics of Thin-Walled Structures" course consists of the following parts:

a) lectures and exercises part – includes 2 main tests & short tests
b) laboratory part – includes 4 introduction lab tests & 1 final lab test

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING Division of Strength of Structures and Materials

6. Regulations -> LECTURE & EXERCISES

- 1. Attendance on **lectures** is not obligatory, but it is *highly recommended*.
- 2. Attendance on **exercises** is **obligatory**.
- 3. There are **2 main tests** and **each test** must be passed at **minimum** grade **3.0**.
- 4. There is **one homework** that <u>must be submitted **on time**</u>.

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING Division of Strength of Structures and Materials

- 6. Regulations -> LABORATORY
- 1. Attendance is **obligatory**.
- 2. There are 4 meetings.
- 3. Outerwear must be left in the cloakroom.
- 4. Eating and drinking are not allowed in the laboratory rooms.
- 5. Lab classes take place in room 20B (to the left of the front-desk to the Institute) or room 129 (in front of the Dean's office).

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

6. Regulations -> LABORATORY

6. There are **4 introduction lab tests** and each one of them must be passed at **minimum** grade **3.0**.

7. **Participation** in lab classes is allowed based on the passed introduction lab test (**min.** grade **3.0**).

- 8. There is **1 final lab test** which must be passed at **minimum** grade **3.0**.
- 9. Topics of the laboratory: Clevis, Conical Structure, Thin-walled beam, Buckling.

10. Each lab exercise must be passed based on the results obtained by a student (plots, graphs, etc.).

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

6. Regulations -> GRADES

Final grade from the course = = 0,25*T1 + 0,25*T2 + 0,15*HMW + 0,15*Intro_Lab_T + 0,2*Final_Lab_T

T1	– grade from main test no. 1
T2	– grade from main test no. 2
HMW	 – final grade from homework
Intro_Lab_T	 – final grade from introduction lab tests (average grade based on
	all 4 intro lab tests)

Final_Lab_T – final grade from final lab test

The <u>calculated average</u> from the above formula for "final grade from the course" must be equal to <u>minimum 3.0</u> in order to pass the course.

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

6. Regulations -> Improvement tests

- 1. The main tests and final lab test <u>can be improved</u>.
- 2. There are no improvements of introduction lab tests.

If you fail (or miss) the test, you MUST attend the Improvement Test to have a chance to pass the MTS course.

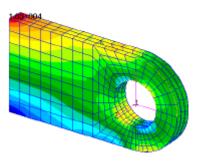
THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

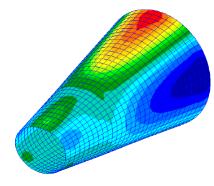
6. Regulations -> ATTENTION

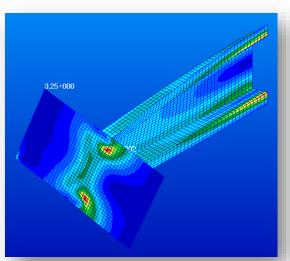
Absence on each of the above-mentioned test results in the grade 0.0.

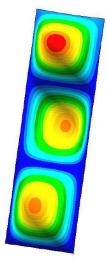
E.g. in case of illness, please send us the information (via e-mail) <u>earlier</u> about your indisposition.



THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

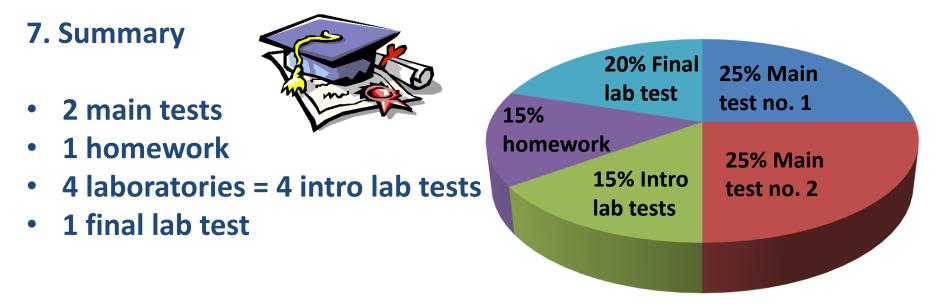

Division of Strength of Structures and Materials


Topics of the laboratory:



1. Clevis

2. Conical Structure


4. Buckling

3. Thin-walled beam

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING Division of Strength of Structures and Materials

Each test must be passed at minimum grade 3.0.

Final grade from the course =

= 0,25*T1 + 0,25*T2 + 0,15*HMW + 0,15*Intro_Lab_T + 0,2*Final_Lab_T = min. 3.0

in order to pass the course

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

1. Contact <u>Supervisor:</u> Prof. Adam Dacko, Ph.D., D.Sc. <u>Assistant:</u> Katarzyna Gojny, Ph.D.

adam.dacko@pw.edu.pl , room 34

<u>katarzyna.gojny@pw.edu.pl</u> , room 37

2. Website of Division of Strength of Materials and Structures or TEAMS folder with "files"

https://www.meil.pw.edu.pl/zwmik/ZWMiK/Dla-studentow2/MTS

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

Questions

THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING

Division of Strength of Structures and Materials

Thank you for your attention!